Linear Algebra Solutions

- 1. (a) [5 marks] Suppose that V is a finite-dimensional vector space over a field \mathbb{F} , and that $T: V \to V$ is a linear transformation.
 - (i) Prove that there exists a non-zero polynomial p(x) such that p(T) = 0.
 - (ii) Prove that there exists a unique monic polynomial m(x) such that for all polynomials q(x), q(T) = 0 if and only if m(x) divides q(x).
 - (iii) State a criterion for diagonalisability of T in terms of m(x).
 - (b) [10 marks] Suppose that V is a finite-dimensional vector space over a field \mathbb{F} and $T: V \to V$ is a linear transformation.
 - (i) Prove that for all i, ker T^i is a subspace of ker T^{i+1} . Let $B_1 \subseteq B_2 \subseteq \cdots$ be sets such that B_i is a basis for ker T^i .
 - (ii) Deduce that if for some $k, T^k = 0$, then T is upper-triangularisable. Deduce that for any $\lambda \in \mathbb{F}$, if $(T \lambda I)^k = 0$, then T is upper-triangularisable.
 - (iii) Show that T is upper-triangularisable if and only if m(x) is a product of linear factors.
 - [You may use the Primary Decomposition Theorem.]
 - (c) [10 marks] For which values of α and β is the matrix

$$A = \begin{pmatrix} 2 & 1 & -1 \\ \alpha - 1 & \alpha - \beta & \beta \\ \alpha - 1 & \alpha - \beta - 1 & \beta + 1 \end{pmatrix}$$

diagonalisable over \mathbb{R} ?

For which values of α and β is it upper-triangularisable over \mathbb{R} ?

(a) [B] (i) If the dimension of V is n, then that of Hom(V) is n^2 . So, $\{I, T, T^2, \ldots, T^{n^2}\}$ is linearly dependent. Hence there exist constants $\alpha_0, \alpha_1, \ldots, \alpha_{n^2}$ not all zero such that

$$\sum_{i=0}^{n^2} \alpha_i T^i = 0$$

Let $p(x) = \sum_{i=0}^{n^2} \alpha_i x^i$.

Then p(x) is a non-zero polynomial and p(T) = 0, as required. [1 mark]

(ii) Let p(x) be a non-zero polynomial of minimal degree such that p(T) = 0.

Define m(x) to be the result of dividing p(x) by its leading coefficient.

Then m(x) is monic, and m(T) = 0. Hence if m(x) divides q(x), then q(T) = 0.

Now suppose that q(x) is a polynomial such that q(T) = 0.

Then there exist polynomials a(x) and b(x) such that

$$q(x) = a(x)m(x) + b(x),$$

and b(x) = 0 or the degree of b(x) is less than that of m(x).

But then b(x) must be zero, yielding that m(x) divides q(x), for otherwise b(x) = q(x) - a(x)m(x), so b(T) = 0, contradicting the minimality of the degree of m(x). [3 marks] T is diagonalisable if and only if m(x) is a product of distinct linear factors. [1 mark] (b) [S; they may find (ii) and (iii) a bit harder because of the way it's presented.] (i) Suppose that $v \in \ker T^i$. Then $T^{i}(v) = 0$. Hence $T(T^{i}(v)) = 0$. That is, $T^{i+1}(v) = 0$. So $v \in \ker T^{i+1}$. [1 mark]

(ii) Writing B_k with the elements of B_1 first, followed by the elements of $B_2 \setminus B_1$, and so on, the matrix of T with respect to B_k is upper-triangular, and indeed all diagonal entries are zero.

We justify the statement that the matrix is upper-triangularisable as follows. The first few columns correspond to element of B_1 , which belong to the kernel of T, and so have no non-zero entries at all. Any subsequent column corresponds to an element of ker $T^{i+1} \setminus \ker T^i$, for some i, which is sent by T to an element of ker T^i , so to a linear combination of members of the basis which are strictly earlier in the ordering. So all non-zero entries in that column are strictly above the diagonal.

(The students are very likely to draw a diagram and do their argument by reference to it.) [3 marks]

If $(T - \lambda I)^k = 0$, let $S = T - \lambda I$. Then S is upper-triangularisable. It follows immediately that T is. [1 mark]

(iii) Now suppose that

$$m(x) = \prod_{i=1}^{r} (x - \lambda_i)^{k_i}.$$

By the Primary Decomposition Theorem,

$$V = \bigoplus_{i=1}^{r} \ker(T - \lambda_i I)^{k_i}.$$

Let B_i be a basis of ker $(T-\lambda_i I)^{k_i}$ with respect to which $T \upharpoonright_{\ker(T-\lambda_i I)^{k_i}}$ is upper-triangularisable. Then if $B = \bigcup_{i=1}^r B_i$, then the matrix of T with respect to B is upper-triangular.

That m(x) splits into linear factors if T is upper-triangularisable is obvious; because if $\lambda_1, \ldots, \lambda_n$ are the diagonal entries, then $\prod_{i=1}^n (T - \lambda_i I)$ is strictly upper-triangular (that is, all diagonal entries are zero), and therefore idempotent. Thus for some k (in fact, for some $k \leq n$), $\left(\prod_{i=1}^n (T - \lambda_i I)\right)^k = 0$. Thus $m_T(x)$ divides $\left(\prod_{i=1}^n (x - \lambda_i)\right)^n$, and thus splits into linear factors. [5 marks]

(c) [S/N; there's been nothing exactly like this on the paper for a few years now.] Let

$$A = \begin{pmatrix} 2 & 1 & -1 \\ \alpha - 1 & \alpha - \beta & \beta \\ \alpha - 1 & \alpha - \beta - 1 & \beta + 1 \end{pmatrix}.$$

Then

$$det(A - xI) = (2 - x)((\alpha - \beta - x)(\beta + 1 - x) - \beta(\alpha - \beta - 1)) - ((\alpha - 1)(\beta + 1 - x) - \beta(\alpha - 1)) - ((\alpha - 1)(\alpha - \beta - 1) - (\alpha - 1)(\alpha - \beta - x)) = (2 - x)((\alpha - \beta - x)(\beta + 1 - x) - \beta(\alpha - \beta - 1)) + (1 - \alpha)((\beta + 1 - x) - \beta + (\alpha - \beta - 1) - (\alpha - \beta - x)) = (2 - x)(x^2 + x(-1 - \alpha) + \alpha) = (2 - x)(x - 1)(x - \alpha).$$

Page 2 of ??

[1 mark]

If α is not equal to 1 or 2, then $\chi_A(x)$ has three distinct roots and so A is diagonalisable. [1 mark]

If α is equal to 1 or 2, then $\chi_A(x)$ has a repeated root, and A is diagonalisable if and only if (A - I)(A - 2I) = 0. [2 marks]

Now the (2, 1)-entry of (A - I)(A - 2I) is $(\alpha - 1)^2$, which is not zero unless $\alpha = 1$. So if $\alpha = 2$, A is not diagonalisable. [2 marks]

If $\alpha = 1$, then

$$(A-I)(A-2I) = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -\beta & \beta \\ 0 & -\beta & \beta \end{pmatrix} \begin{pmatrix} 0 & 1 & -1 \\ 0 & -\beta - 1 & \beta \\ 0 & -\beta & \beta - 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta & -\beta \\ 0 & \beta & -\beta \end{pmatrix}$$

which is zero if and only if $\beta = 0$. [2 marks]

So A is diagonalisable if and only if either α is not 1 or 2, or $\alpha = 1$ and $\beta = 0$.

By the criterion in part (b), A is upper-triangularisable whatever the values of α and β , since by the Cayley-Hamilton Theorem m(x) divides $(x-2)(x-1)(x-\alpha)$ and so is a product of linear factors. [2 marks]

- 2. (a) [15 marks] Suppose that V is a finite-dimensional vector space over a field \mathbb{F} . Suppose that $B = \{e_1, \ldots, e_n\}$ is a basis for V.
 - (i) Define the dual space V' of V and the dual basis $B' = \{e'_1, \ldots, e'_n\}$. Prove that B' is indeed a basis for V'.
 - (ii) If $T: V \to V$ is a linear transformation, define the *dual map* T'. State and prove a relationship between the matrices of T and T' with respect to the bases given. How are the characteristic polynomials of T and T' related? How are the minimum polynomials related? Justify your answers briefly.
 - (iii) If U is a subspace of V, define the annihilator U° of U.
 - (iv) Define a natural isomorphism Φ between V and its double dual V". (You do not need to give proofs that Φ is well-defined or that it is an isomorphism.) Prove that if U is a subspace of V, then $\Phi|_U$ is a bijection between U and $U^{\circ\circ}$.
 - (b) [10 marks] Let V be the vector space of all functions $f : \mathbb{N} \to \mathbb{R}$ such that for all but finitely many n, f(n) = 0, equipped with operations of vector addition and scalar multiplication defined so that (f + g)(n) = f(n) + g(n) and $(\alpha f)(n) = \alpha f(n)$ for all $f, g \in V$, $n \in \mathbb{N}$, and $\alpha \in \mathbb{R}$.

Define W to be the vector space of all functions from \mathbb{N} to \mathbb{R} , with similarly defined operations of vector addition and scalar multiplication.

If $f \in W$, define $\theta_f : V \to \mathbb{R}$ so that

$$\theta_f(g) = \sum_{n=0}^\infty f(n)g(n)$$

Prove that the map $f \mapsto \theta_f$ is an isomorphism between W and V'.

Prove that the map $\Phi: V \to V''$ defined as in part (a) is not a surjection.

[You may assume that if U is a vector space over \mathbb{R} , L is a linearly independent subset of U, and $h: L \to \mathbb{R}$, then there exists a linear functional $k: U \to \mathbb{R}$ such that $k|_L = h$.]

The dual basis is defined so that $e'_i(e_j) = \delta_{i,j}$. [1 mark] The dual basis is linearly independent, since if

The dual basis is linearly independent, since if

$$\alpha_1 e_1' + \dots + \alpha_n e_n' = 0,$$

then for all i,

$$(\alpha_1 e'_1 + \dots + \alpha_n e'_n)(e_i) = 0,$$

that is, $\alpha_i = 0$.

To prove that it is a spanning set, suppose that $f \in V'$. Let $\alpha_i = f(e_i)$ for all *i*. Then for all *i*,

$$f(e_i) = \alpha_i = \left(\sum_j \alpha_j e'_j\right) e_i$$

so since f and $\sum_j \alpha_j e'_j$ are linear and agree on a spanning set, they are equal. [3 marks] (ii) If $f \in V'$, then define T'(f) so that T'(f)(v) = f(T(v)) for all $v \in V$. [1 mark]

⁽a) [B] (i) The dual space V' is the set of all linear functionals on V, that is to say, the set of all functions $f: V \to \mathbb{F}$ such that f(u+v) = f(u) + f(v) and $f(\alpha v) = \alpha f(v)$ for all $\alpha \in \mathbb{F}$ and all $u, v \in V$, with vector addition and scalar multiplication defined so that (f+g)(v) = f(v)+g(v) and $(\alpha f)(v) = \alpha f(v)$ for all $v \in V$, $f, g \in V'$ and $\alpha \in \mathbb{F}$. [1 mark]

Let the matrix of T with respect to B be $(a_{i,j})$ and the matrix of T' with respect to B' be $(b_{i,j})$.

Then

$$e'_{i}(T(e_{j})) = e'_{i}\left(\sum_{k=1}^{n} a_{k,j}e_{k}\right) = a_{i,j},$$

while

$$(T'(e'_i))(e_j) = \left(\sum_{k=1}^n b_{k,i}e'_k\right)(e_j) = b_{j,i}.$$

So $b_{j,i} = a_{i,j}$, and the matrices are each other's transpose; and so their minimum polynomials are the same, as are their characteristic polynomials. [4 marks]

- (iii) $U^{\circ} = \{ f \in V' : \forall u \in U f(u) = 0 \}$. [1 mark]
- (iv) Φ is defined so that for all $f \in V'$ and $v \in V$,

$$\Phi(v)(f) = f(v)$$

We show that $u \in U$ if and only if for all $f \in U^{\circ}$, f(u) = 0.

The forward direction is simply the definition of U° .

As for the reverse direction, let $\{e_1, \ldots, e_k\}$ be a basis for U and extend it to a basis $\{e_1, \ldots, e_n\}$ for V. Let $\{e'_1, \ldots, e'_n\}$ be the dual basis. Then $(\sum_{j=1}^n \alpha_j e'_j)(e_i) = 0$ if and only if $\alpha_i = 0$. It follows that $f(e_i) = 0$ for all i < n if and only if f is in the span of $\{e'_{k+1}, \ldots, e'_n\}$. It now readily follows that U° is the span of $\{e'_{k+1}, \ldots, e'_n\}$.

Now, $u \in U$ if and only if for all $f \in U^{\circ}$, f(u) = 0, if and only if for all $f \in U^{\circ}$, $\Phi(u)(f) = 0$, if and only if $\Phi(u) \in U^{\circ \circ}$. [4 marks]

(b) [N] If $f \in W$, we observe that θ_f is linear, so is an element of V'. Also, if $f \neq 0$, then there exists $n \in \mathbb{N}$ such that $f(n) \neq 0$. Now we define $g \in V$ such that g(n) = 1, and g(m) = 0 for all $m \neq n$. Then $\theta_f(g) = f(n) \neq 0$. So the operator $f \mapsto \theta_f$ is one-to-one. Finally, to show that it is onto, let h be any element of V'. Then if g_n is defined, for each natural number n, so that $g_n(m) = 1$ if m = n and is equal to 0 otherwise, then the set of g_n is a basis for V. So if f is defined so that $f(n) = h(g_n)$ for each n, then for any $g \in V$, $g = \sum_n g(n)g_n$, and $\theta_f(g) = \sum_n f(n)g(n) = \sum_n h(g_n)g(n) = h(\sum_n g(n)g_n) = h(g)$. So $h = \theta_f$. [4 marks]

For each n, define $f_n(m)$ to be 1 if n = m and 0 if $n \neq m$. Let g be the function $n \mapsto 1$. Then $\{f_n : n \in \mathbb{N}\} \cup \{g\}$ is linearly independent in W, and so its image under the operator $f \mapsto \theta_f$ is linearly independent in V'.

Define $h(\theta_{f_n})$ to be 0 and h(g) to be 1. Extend this to a linear functional k on V'.

Since $k(\theta_{f_n}) = 0$ for all n and k(g) = 1, k cannot be in the image of Φ .

[6 marks]

- 3. Let V be a finite-dimensional inner-product space over \mathbb{C} .
 - (a) [6 marks] Suppose that $T: V \to V$ is a linear transformation. Define the *adjoint* map T^* .

Suppose that T has the property that $T^* = \alpha T$ for some $\alpha \in \mathbb{C}$. Prove that T is diagonalisable.

(b) [9 marks] We say that T is self-adjoint if $T^* = T$, and that it is skew-adjoint if $T^* = -T$. Observe that if S and T are self-adjoint, then so are S + T, S - T, and βT , for any real number β .

Recall that if $T: V \to V$ is any linear transformation, then $T + T^*$ is self-adjoint.

- (i) Prove that any linear transformation T can be written as the sum of a self-adjoint and a skew-adjoint linear transformation.Is it the case that a sum of diagonalisable linear transformations is diagonalisable? Give a proof or a counterexample.
- (ii) What are the possible eigenvalues of a self-adjoint linear transformation? Justify your answer carefully.
- (iii) Characterise the possible Jordan Normal Forms of linear transformations $T: V \to V$ such that T^2 is self-adjoint.
- (c) [10 marks] Suppose now that $T: V \to V$ is a linear transformation, and that $TT^* = T^*T$.
 - (i) Prove that if v is an eigenvector of T^* , then v^{\perp} is T-invariant.
 - (ii) Prove that if $V_{\lambda} = \ker(T \lambda I)$, and $v \in V_{\lambda}$, then $T^*v \in V_{\lambda}$ also.
 - (iii) Hence prove that there exists an orthogonal basis for V consisting of vectors which are eigenvectors for both T and T^* .
 - (iv) Does it follow that T is self-adjoint? Give a proof or a counterexample.

(a) [B/S] The *adjoint* is the unique linear transformation $T^* : V \to V$ such that for all $u, v \in V$, $(T^*v, u) = (v, Tu)$. [1 mark]

Suppose that $T^* = \alpha T$, where $\alpha \neq 0$. Assume that V is not trivial. Since the underlying field is \mathbb{C} , $\chi_T(x)$ has a root, so T has an eigenvector, v; say λ is the eigenvalue.

We prove that v^{\perp} is *T*-invariant.

Suppose that $u \in v^{\perp}$.

Then (u, v) = 0.

Also $(Tu, v) = (\lambda u, v) = \lambda(u, v) = 0.$

So
$$(u, T^*v) = 0$$
.

Now $T^*v = \alpha Tv$, so $(u, \alpha Tv) = 0$, so $\overline{\alpha}(u, Tv) = 0$, so since $\alpha \neq 0$, (u, Tv) = 0 as required.

By the inductive hypothesis we assume that $T \upharpoonright_{v^{\perp}}$ has a basis B of eigenvectors. Then $B \cup \{v\}$ is a basis of eigenvectors for T. [5 marks]

(b) [B/N]

(i) $T - T^*$ is clearly skew-self-adjoint.

 $T = (1/2)(T + T^*) + (1/2)(T - T^*)$ as required. [1 mark]

The linear transformation with matrix with respect to the standard basis given by

 $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

is not diagonalisable, since its characteristic polynomial is x^2 and its minimum polynomial is not x.

But it is the sum of a self-adjoint and a skew-self-adjoint transformation as above. [3 marks] (ii) I is certainly self-adjoint so for all real β , βI is self-adjoint also, and has eigenvalue β . Conversely, if T is self-adjoint with eigenvalue λ , then $(Tv, v) = (\lambda v, v) = \lambda ||v||^2$, while $(v, Tv) = (v, \lambda v) = \overline{\lambda} ||v||^2$, so $\lambda = \overline{\lambda}$ and λ is real. [1 mark] (iii) [N] Suppose that T^2 is self-adjoint and

$$A = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ 0 & \lambda & & & \\ & & & & \lambda \end{pmatrix}$$

is a Jordan block for T.

Then A^2 has the form

and is diagonal if and only if either the size of the block is 1×1 , or it has size 2×2 and $\lambda = 0$. Also, A^2 is diagonalisable if and only if it is diagonal; for if it is not diagonal then its minimum polynomial is $(x - \lambda^2)^k$ for some k > 1, which is not a product of distinct linear factors. [3 marks]

So the Jordan Normal Forms of transformations T such that T^2 is self-adjoint have Jordan blocks of that form, with λ being either real or purely imaginary. [1 marks]

(c) (i) Suppose v is an eigenvector of T^* , and $u \in v^{\perp}$.

Then (v, u) = 0.

Since T^*v is a scalar multiple of v, $(T^*v, u) = 0$.

Hence (v, Tu) = 0, and so $Tu \in v^{\perp}$, as required. [2 marks]

(ii) Suppose that $v \in V_{\lambda}$.

Then $T^*Tv = T^*(\lambda v) = \lambda T^*v$. But also $T^*Tv = TT^*v$. Hence $T(T^*v) = \lambda T^*v$, and so $T^*v \in V_{\lambda}$. [2 marks]

(iii) If V is non-trivial, then the characteristic polynomial of T, being a non-constant complex polynomial, has a root. So T has an eigenvalue λ , whose corresponding eigenspace V_{λ} is non-trivial. Now $T^*|_{V_{\lambda}}$ also has an eigenvector by the same reasoning, which is a simultaneous eigenvector of T and T^* . [2 marks]

We do induction on $\dim V$.

Let u be a simultaneous eigenvector for T and T^* . Then u^{\perp} is invariant under both T^* and T. By the inductive hypothesis, u^{\perp} has a basis B of the correct form.

Then $B \cup \{u\}$ is a basis of the desired form for V. [2 marks]

(iv) If T = iI, then $T^* = -iI$. These commute, but are not equal. [2 marks]