Linear Algebra Solutions

1. (a) [5 marks] Suppose that V is a finite-dimensional vector space over a field \mathbb{F}, and that $T: V \rightarrow V$ is a linear transformation.
(i) Prove that there exists a non-zero polynomial $p(x)$ such that $p(T)=0$.
(ii) Prove that there exists a unique monic polynomial $m(x)$ such that for all polynomials $q(x), q(T)=0$ if and only if $m(x)$ divides $q(x)$.
(iii) State a criterion for diagonalisability of T in terms of $m(x)$.
(b) [10 marks] Suppose that V is a finite-dimensional vector space over a field \mathbb{F} and $T: V \rightarrow$ V is a linear transformation.
(i) Prove that for all i, $\operatorname{ker} T^{i}$ is a subspace of $\operatorname{ker} T^{i+1}$. Let $B_{1} \subseteq B_{2} \subseteq \cdots$ be sets such that B_{i} is a basis for $\operatorname{ker} T^{i}$.
(ii) Deduce that if for some $k, T^{k}=0$, then T is upper-triangularisable. Deduce that for any $\lambda \in \mathbb{F}$, if $(T-\lambda I)^{k}=0$, then T is upper-triangularisable.
(iii) Show that T is upper-triangularisable if and only if $m(x)$ is a product of linear factors. [You may use the Primary Decomposition Theorem.]
(c) [10 marks] For which values of α and β is the matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
\alpha-1 & \alpha-\beta & \beta \\
\alpha-1 & \alpha-\beta-1 & \beta+1
\end{array}\right)
$$

diagonalisable over \mathbb{R} ?
For which values of α and β is it upper-triangularisable over \mathbb{R} ?
(a) [B] (i) If the dimension of V is n, then that of $\operatorname{Hom}(V)$ is n^{2}. So, $\left\{I, T, T^{2}, \ldots, T^{n^{2}}\right\}$ is linearly dependent. Hence there exist constants $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n^{2}}$ not all zero such that

$$
\sum_{i=0}^{n^{2}} \alpha_{i} T^{i}=0
$$

Let $p(x)=\sum_{i=0}^{n^{2}} \alpha_{i} x^{i}$.
Then $p(x)$ is a non-zero polynomial and $p(T)=0$, as required. [1 mark]
(ii) Let $p(x)$ be a non-zero polynomial of minimal degree such that $p(T)=0$.

Define $m(x)$ to be the result of dividing $p(x)$ by its leading coefficient.
Then $m(x)$ is monic, and $m(T)=0$. Hence if $m(x)$ divides $q(x)$, then $q(T)=0$.
Now suppose that $q(x)$ is a polynomial such that $q(T)=0$.
Then there exist polynomials $a(x)$ and $b(x)$ such that

$$
q(x)=a(x) m(x)+b(x),
$$

and $b(x)=0$ or the degree of $b(x)$ is less than that of $m(x)$.
But then $b(x)$ must be zero, yielding that $m(x)$ divides $q(x)$, for otherwise $b(x)=q(x)-$ $a(x) m(x)$, so $b(T)=0$, contradicting the minimality of the degree of $m(x)$. [3 marks] T is diagonalisable if and only if $m(x)$ is a product of distinct linear factors. [1 mark]
(b) [S; they may find (ii) and (iii) a bit harder because of the way it's presented.] (i) Suppose that $v \in \operatorname{ker} T^{i}$.

Then $T^{i}(v)=0$.
Hence $T\left(T^{i}(v)\right)=0$.
That is, $T^{i+1}(v)=0$.
So $v \in \operatorname{ker} T^{i+1}$. [1 mark]
(ii) Writing B_{k} with the elements of B_{1} first, followed by the elements of $B_{2} \backslash B_{1}$, and so on, the matrix of T with respect to B_{k} is upper-triangular, and indeed all diagonal entries are zero.
We justify the statement that the matrix is upper-triangularisable as follows. The first few columns correspond to element of B_{1}, which belong to the kernel of T, and so have no non-zero entries at all. Any subsequent column corresponds to an element of $\operatorname{ker} T^{i+1} \backslash \operatorname{ker} T^{i}$, for some i, which is sent by T to an element of $\operatorname{ker} T^{i}$, so to a linear combination of members of the basis which are strictly earlier in the ordering. So all non-zero entries in that column are strictly above the diagonal.
(The students are very likely to draw a diagram and do their argument by reference to it.) [3 marks]
If $(T-\lambda I)^{k}=0$, let $S=T-\lambda I$. Then S is upper-triangularisable. It follows immediately that T is. [1 mark]
(iii) Now suppose that

$$
m(x)=\prod_{i=1}^{r}\left(x-\lambda_{i}\right)^{k_{i}} .
$$

By the Primary Decomposition Theorem,

$$
V=\stackrel{r}{\underset{i=1}{\oplus}} \operatorname{ker}\left(T-\lambda_{i} I\right)^{k_{i}} .
$$

 Then if $B=\bigcup_{i=1}^{r} B_{i}$, then the matrix of T with respect to B is upper-triangular.
That $m(x)$ splits into linear factors if T is upper-triangularisable is obvious; because if $\lambda_{1}, \ldots, \lambda_{n}$ are the diagonal entries, then $\prod_{i=1}^{n}\left(T-\lambda_{i} I\right)$ is strictly upper-triangular (that is, all diagonal entries are zero), and therefore idempotent. Thus for some k (in fact, for some $k \leqslant n$), $\left(\prod_{i=1}^{n}\left(T-\lambda_{i} I\right)\right)^{k}=0$. Thus $m_{T}(x)$ divides $\left(\prod_{i=1}^{n}\left(x-\lambda_{i}\right)\right)^{n}$, and thus splits into linear factors. [5 marks]
(c) $[\mathrm{S} / \mathrm{N}$; there's been nothing exactly like this on the paper for a few years now.] Let

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
\alpha-1 & \alpha-\beta & \beta \\
\alpha-1 & \alpha-\beta-1 & \beta+1
\end{array}\right) .
$$

Then

$$
\begin{aligned}
\operatorname{det}(A-x I)= & (2-x)((\alpha-\beta-x)(\beta+1-x)-\beta(\alpha-\beta-1)) \\
& -((\alpha-1)(\beta+1-x)-\beta(\alpha-1)) \\
& -((\alpha-1)(\alpha-\beta-1)-(\alpha-1)(\alpha-\beta-x)) \\
= & (2-x)((\alpha-\beta-x)(\beta+1-x)-\beta(\alpha-\beta-1)) \\
& +(1-\alpha)((\beta+1-x)-\beta+(\alpha-\beta-1)-(\alpha-\beta-x)) \\
= & (2-x)\left(x^{2}+x(-1-\alpha)+\alpha\right) \\
= & (2-x)(x-1)(x-\alpha) .
\end{aligned}
$$

[1 mark]
If α is not equal to 1 or 2 , then $\chi_{A}(x)$ has three distinct roots and so A is diagonalisable. [1 mark]
If α is equal to 1 or 2 , then $\chi_{A}(x)$ has a repeated root, and A is diagonalisable if and only if $(A-I)(A-2 I)=0$. [2 marks]
Now the $(2,1)$-entry of $(A-I)(A-2 I)$ is $(\alpha-1)^{2}$, which is not zero unless $\alpha=1$. So if $\alpha=2$, A is not diagonalisable. [2 marks]
If $\alpha=1$, then

$$
(A-I)(A-2 I)=\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -\beta & \beta \\
0 & -\beta & \beta
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & -\beta-1 & \beta \\
0 & -\beta & \beta-1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \beta & -\beta \\
0 & \beta & -\beta
\end{array}\right)
$$

which is zero if and only if $\beta=0$. [2 marks]
So A is diagonalisable if and only if either α is not 1 or 2 , or $\alpha=1$ and $\beta=0$.
By the criterion in part (b), A is upper-triangularisable whatever the values of α and β, since by the Cayley-Hamilton Theorem $m(x)$ divides $(x-2)(x-1)(x-\alpha)$ and so is a product of linear factors. [2 marks]
2. (a) [15 marks] Suppose that V is a finite-dimensional vector space over a field \mathbb{F}. Suppose that $B=\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for V.
(i) Define the dual space V^{\prime} of V and the dual basis $B^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$. Prove that B^{\prime} is indeed a basis for V^{\prime}.
(ii) If $T: V \rightarrow V$ is a linear transformation, define the dual map T^{\prime}. State and prove a relationship between the matrices of T and T^{\prime} with respect to the bases given. How are the characteristic polynomials of T and T^{\prime} related? How are the minimum polynomials related? Justify your answers briefly.
(iii) If U is a subspace of V, define the annihilator U° of U.
(iv) Define a natural isomorphism Φ between V and its double dual $V^{\prime \prime}$. (You do not need to give proofs that Φ is well-defined or that it is an isomorphism.) Prove that if U is a subspace of V, then $\left.\Phi\right|_{U}$ is a bijection between U and $U^{\circ \circ}$.
(b) [10 marks] Let V be the vector space of all functions $f: \mathbb{N} \rightarrow \mathbb{R}$ such that for all but finitely many $n, f(n)=0$, equipped with operations of vector addition and scalar multiplication defined so that $(f+g)(n)=f(n)+g(n)$ and $(\alpha f)(n)=\alpha f(n)$ for all $f, g \in V$, $n \in \mathbb{N}$, and $\alpha \in \mathbb{R}$.
Define W to be the vector space of all functions from \mathbb{N} to \mathbb{R}, with similarly defined operations of vector addition and scalar multiplication.
If $f \in W$, define $\theta_{f}: V \rightarrow \mathbb{R}$ so that

$$
\theta_{f}(g)=\sum_{n=0}^{\infty} f(n) g(n) .
$$

Prove that the map $f \mapsto \theta_{f}$ is an isomorphism between W and V^{\prime}.
Prove that the map $\Phi: V \rightarrow V^{\prime \prime}$ defined as in part (a) is not a surjection.
[You may assume that if U is a vector space over \mathbb{R}, L is a linearly independent subset of U, and $h: L \rightarrow \mathbb{R}$, then there exists a linear functional $k: U \rightarrow \mathbb{R}$ such that $\left.k\right|_{L}=h$.]
(a) [B] (i) The dual space V^{\prime} is the set of all linear functionals on V, that is to say, the set of all functions $f: V \rightarrow \mathbb{F}$ such that $f(u+v)=f(u)+f(v)$ and $f(\alpha v)=\alpha f(v)$ for all $\alpha \in \mathbb{F}$ and all $u, v \in V$, with vector addition and scalar multiplication defined so that $(f+g)(v)=f(v)+g(v)$ and $(\alpha f)(v)=\alpha f(v)$ for all $v \in V, f, g \in V^{\prime}$ and $\alpha \in \mathbb{F}$. [1 mark]
The dual basis is defined so that $e_{i}^{\prime}\left(e_{j}\right)=\delta_{i, j}$. [1 mark]
The dual basis is linearly independent, since if

$$
\alpha_{1} e_{1}^{\prime}+\cdots+\alpha_{n} e_{n}^{\prime}=0
$$

then for all i,

$$
\left(\alpha_{1} e_{1}^{\prime}+\cdots+\alpha_{n} e_{n}^{\prime}\right)\left(e_{i}\right)=0,
$$

that is, $\alpha_{i}=0$.
To prove that it is a spanning set, suppose that $f \in V^{\prime}$. Let $\alpha_{i}=f\left(e_{i}\right)$ for all i. Then for all i,

$$
f\left(e_{i}\right)=\alpha_{i}=\left(\sum_{j} \alpha_{j} e_{j}^{\prime}\right) e_{i}
$$

so since f and $\sum_{j} \alpha_{j} e_{j}^{\prime}$ are linear and agree on a spanning set, they are equal. [3 marks] (ii) If $f \in V^{\prime}$, then define $T^{\prime}(f)$ so that $T^{\prime}(f)(v)=f(T(v))$ for all $v \in V$. [1 mark]

Let the matrix of T with respect to B be $\left(a_{i, j}\right)$ and the matrix of T^{\prime} with respect to B^{\prime} be $\left(b_{i, j}\right)$.
Then

$$
e_{i}^{\prime}\left(T\left(e_{j}\right)\right)=e_{i}^{\prime}\left(\sum_{k=1}^{n} a_{k, j} e_{k}\right)=a_{i, j},
$$

while

$$
\left(T^{\prime}\left(e_{i}^{\prime}\right)\right)\left(e_{j}\right)=\left(\sum_{k=1}^{n} b_{k, i} e_{k}^{\prime}\right)\left(e_{j}\right)=b_{j, i}
$$

So $b_{j, i}=a_{i, j}$, and the matrices are each other's transpose; and so their minimum polynomials are the same, as are their characteristic polynomials. [4 marks]
(iii) $U^{\circ}=\left\{f \in V^{\prime}: \forall u \in U f(u)=0\right\}$. [1 mark]
(iv) Φ is defined so that for all $f \in V^{\prime}$ and $v \in V$,

$$
\Phi(v)(f)=f(v) .
$$

We show that $u \in U$ if and only if for all $f \in U^{\circ}, f(u)=0$.
The forward direction is simply the definition of U°.
As for the reverse direction, let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a basis for U and extend it to a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for V. Let $\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ be the dual basis. Then $\left(\sum_{j=1}^{n} \alpha_{j} e_{j}^{\prime}\right)\left(e_{i}\right)=0$ if and only if $\alpha_{i}=0$. It follows that $f\left(e_{i}\right)=0$ for all $i<n$ if and only if f is in the span of $\left\{e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$. It now readily follows that U° is the span of $\left\{e_{k+1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$.
Now, $u \in U$ if and only if for all $f \in U^{\circ}, f(u)=0$, if and only if for all $f \in U^{\circ}, \Phi(u)(f)=0$, if and only if $\Phi(u) \in U^{\circ \circ}$. [4 marks]
(b) $[\mathrm{N}]$ If $f \in W$, we observe that θ_{f} is linear, so is an element of V^{\prime}. Also, if $f \neq 0$, then there exists $n \in \mathbb{N}$ such that $f(n) \neq 0$. Now we define $g \in V$ such that $g(n)=1$, and $g(m)=0$ for all $m \neq n$. Then $\theta_{f}(g)=f(n) \neq 0$. So the operator $f \mapsto \theta_{f}$ is one-to-one. Finally, to show that it is onto, let h be any element of V^{\prime}. Then if g_{n} is defined, for each natural number n, so that $g_{n}(m)=1$ if $m=n$ and is equal to 0 otherwise, then the set of g_{n} is a basis for V. So if f is defined so that $f(n)=h\left(g_{n}\right)$ for each n, then for any $g \in V, g=\sum_{n} g(n) g_{n}$, and $\theta_{f}(g)=\sum_{n} f(n) g(n)=\sum_{n} h\left(g_{n}\right) g(n)=h\left(\sum_{n} g(n) g_{n}\right)=h(g)$. So $h=\theta_{f}$. [4 marks]
For each n, define $f_{n}(m)$ to be 1 if $n=m$ and 0 if $n \neq m$. Let g be the function $n \mapsto 1$. Then $\left\{f_{n}: n \in \mathbb{N}\right\} \cup\{g\}$ is linearly independent in W, and so its image under the operator $f \mapsto \theta_{f}$ is linearly independent in V^{\prime}.
Define $h\left(\theta_{f_{n}}\right)$ to be 0 and $h(g)$ to be 1. Extend this to a linear functional k on V^{\prime}.
Since $k\left(\theta_{f_{n}}\right)=0$ for all n and $k(g)=1, k$ cannot be in the image of Φ.
[6 marks]
3. Let V be a finite-dimensional inner-product space over \mathbb{C}.
(a) [6 marks] Suppose that $T: V \rightarrow V$ is a linear transformation. Define the adjoint map T^{*}.
Suppose that T has the property that $T^{*}=\alpha T$ for some $\alpha \in \mathbb{C}$. Prove that T is diagonalisable.
(b) [9 marks] We say that T is self-adjoint if $T^{*}=T$, and that it is skew-adjoint if $T^{*}=-T$. Observe that if S and T are self-adjoint, then so are $S+T, S-T$, and βT, for any real number β.
Recall that if $T: V \rightarrow V$ is any linear transformation, then $T+T^{*}$ is self-adjoint.
(i) Prove that any linear transformation T can be written as the sum of a self-adjoint and a skew-adjoint linear transformation.
Is it the case that a sum of diagonalisable linear transformations is diagonalisable? Give a proof or a counterexample.
(ii) What are the possible eigenvalues of a self-adjoint linear transformation? Justify your answer carefully.
(iii) Characterise the possible Jordan Normal Forms of linear transformations $T: V \rightarrow V$ such that T^{2} is self-adjoint.
(c) [10 marks] Suppose now that $T: V \rightarrow V$ is a linear transformation, and that $T T^{*}=T^{*} T$.
(i) Prove that if v is an eigenvector of T^{*}, then v^{\perp} is T-invariant.
(ii) Prove that if $V_{\lambda}=\operatorname{ker}(T-\lambda I)$, and $v \in V_{\lambda}$, then $T^{*} v \in V_{\lambda}$ also.
(iii) Hence prove that there exists an orthogonal basis for V consisting of vectors which are eigenvectors for both T and T^{*}.
(iv) Does it follow that T is self-adjoint? Give a proof or a counterexample.
(a) $[\mathrm{B} / \mathrm{S}]$ The adjoint is the unique linear transformation $T^{*}: V \rightarrow V$ such that for all $u, v \in V$, $\left(T^{*} v, u\right)=(v, T u)$. [1 mark]

Suppose that $T^{*}=\alpha T$, where $\alpha \neq 0$. Assume that V is not trivial. Since the underlying field is $\mathbb{C}, \chi_{T}(x)$ has a root, so T has an eigenvector, v; say λ is the eigenvalue.
We prove that v^{\perp} is T-invariant.
Suppose that $u \in v^{\perp}$.
Then $(u, v)=0$.
Also $(T u, v)=(\lambda u, v)=\lambda(u, v)=0$.
So $\left(u, T^{*} v\right)=0$.
Now $T^{*} v=\alpha T v$, so $(u, \alpha T v)=0$, so $\bar{\alpha}(u, T v)=0$, so since $\alpha \neq 0,(u, T v)=0$ as required.
By the inductive hypothesis we assume that $T \upharpoonright_{v^{\perp}}$ has a basis B of eigenvectors. Then $B \cup\{v\}$ is a basis of eigenvectors for T. [5 marks]
(b) $[\mathrm{B} / \mathrm{N}]$
(i) $T-T^{*}$ is clearly skew-self-adjoint.
$T=(1 / 2)\left(T+T^{*}\right)+(1 / 2)\left(T-T^{*}\right)$ as required. [1 mark]
The linear transformation with matrix with respect to the standard basis given by

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

is not diagonalisable, since its characteristic polynomial is x^{2} and its minimum polynomial is not x.

But it is the sum of a self-adjoint and a skew-self-adjoint transformation as above. [3 marks]
(ii) I is certainly self-adjoint so for all real $\beta, \beta I$ is self-adjoint also, and has eigenvalue β.

Conversely, if T is self-adjoint with eigenvalue λ, then $(T v, v)=(\lambda v, v)=\lambda\|v\|^{2}$, while $(v, T v)=(v, \lambda v)=\bar{\lambda}\|v\|^{2}$, so $\lambda=\bar{\lambda}$ and λ is real. [1 mark]
(iii) [N$]$ Suppose that T^{2} is self-adjoint and

$$
A=\left(\begin{array}{cccc}
\lambda & 1 & \ldots & 0 \\
0 & \lambda & & \\
& & & \\
& & & \lambda
\end{array}\right)
$$

is a Jordan block for T.
Then A^{2} has the form

$$
A=\left(\begin{array}{ccccc}
\lambda^{2} & 2 \lambda & 1 & \ldots & 0 \\
0 & \lambda^{2} & 2 \lambda & & \\
& & & & \lambda^{2}
\end{array}\right)
$$

and is diagonal if and only if either the size of the block is 1×1, or it has size 2×2 and $\lambda=0$.
Also, A^{2} is diagonalisable if and only if it is diagonal; for if it is not diagonal then its minimum polynomial is $\left(x-\lambda^{2}\right)^{k}$ for some $k>1$, which is not a product of distinct linear factors. [3 marks]
So the Jordan Normal Forms of transformations T such that T^{2} is self-adjoint have Jordan blocks of that form, with λ being either real or purely imaginary. [1 marks]
(c) (i) Suppose v is an eigenvector of T^{*}, and $u \in v^{\perp}$.

Then $(v, u)=0$.
Since $T^{*} v$ is a scalar multiple of $v,\left(T^{*} v, u\right)=0$.
Hence ($v, T u$) $=0$, and so $T u \in v^{\perp}$, as required. [2 marks]
(ii) Suppose that $v \in V_{\lambda}$.

Then $T^{*} T v=T^{*}(\lambda v)=\lambda T^{*} v$. But also $T^{*} T v=T T^{*} v$. Hence $T\left(T^{*} v\right)=\lambda T^{*} v$, and so $T^{*} v \in V_{\lambda}$. [2 marks]
(iii) If V is non-trivial, then the characteristic polynomial of T, being a non-constant complex polynomial, has a root. So T has an eigenvalue λ, whose corresponding eigenspace V_{λ} is nontrivial. Now $\left.T^{*}\right|_{V_{\lambda}}$ also has an eigenvector by the same reasoning, which is a simultaneous eigenvector of T and T^{*}. [2 marks]
We do induction on $\operatorname{dim} V$.
Let u be a simultaneous eigenvector for T and T^{*}. Then u^{\perp} is invariant under both T^{*} and T. By the inductive hypothesis, u^{\perp} has a basis B of the correct form.
Then $B \cup\{u\}$ is a basis of the desired form for V. [2 marks]
(iv) If $T=\mathrm{i} I$, then $T^{*}=-\mathrm{i} I$. These commute, but are not equal. [2 marks]

